189 research outputs found

    FOOTER: a web tool for finding mammalian DNA regulatory regions using phylogenetic footprinting

    Get PDF
    FOOTER is a newly developed algorithm that analyzes homologous mammalian promoter sequences in order to identify transcriptional DNA regulatory ‘signals’. FOOTER uses prior knowledge about the binding site preferences of the transcription factors (TFs) in the form of position-specific scoring matrices (PSSMs). The PSSM models are generated from known mammalian binding sites from the TRANSFAC database. In a test set of 72 confirmed binding sites (most of them not present in TRANSFAC) of 19 TFs, it exhibited 83% sensitivity and 72% specificity. FOOTER is accessible over the web at

    Association Signals Unveiled by a Comprehensive Gene Set Enrichment Analysis of Dental Caries Genome-Wide Association Studies

    Get PDF
    Gene set-based analysis of genome-wide association study (GWAS) data has recently emerged as a useful approach to examine the joint effects of multiple risk loci in complex human diseases or phenotypes. Dental caries is a common, chronic, and complex disease leading to a decrease in quality of life worldwide. In this study, we applied the approaches of gene set enrichment analysis to a major dental caries GWAS dataset, which consists of 537 cases and 605 controls. Using four complementary gene set analysis methods, we analyzed 1331 Gene Ontology (GO) terms collected from the Molecular Signatures Database (MSigDB). Setting false discovery rate (FDR) threshold as 0.05, we identified 13 significantly associated GO terms. Additionally, 17 terms were further included as marginally associated because they were top ranked by each method, although their FDR is higher than 0.05. In total, we identified 30 promising GO terms, including 'Sphingoid metabolic process,' 'Ubiquitin protein ligase activity,' 'Regulation of cytokine secretion,' and 'Ceramide metabolic process.' These GO terms encompass broad functions that potentially interact and contribute to the oral immune response related to caries development, which have not been reported in the standard single marker based analysis. Collectively, our gene set enrichment analysis provided complementary insights into the molecular mechanisms and polygenic interactions in dental caries, revealing promising association signals that could not be detected through single marker analysis of GWAS data. © 2013 Wang et al

    Regulatory conservation of protein coding and microRNA genes in vertebrates: lessons from the opossum genome

    Get PDF
    BACKGROUND: Being the first noneutherian mammal sequenced, Monodelphis domestica (opossum) offers great potential for enhancing our understanding of the evolutionary processes that take place in mammals. This study focuses on the evolutionary relationships between conservation of noncoding sequences, cis-regulatory elements, and biologic functions of regulated genes in opossum and eight vertebrate species. RESULTS: Analysis of 145 intergenic microRNA and all protein coding genes revealed that the upstream sequences of the former are up to twice as conserved as the latter among mammals, except in the first 500 base pairs, where the conservation is similar. Comparison of promoter conservation in 513 protein coding genes and related transcription factor binding sites (TFBSs) showed that 41% of the known human TFBSs are located in the 6.7% of promoter regions that are conserved between human and opossum. Some core biologic processes exhibited significantly fewer conserved TFBSs in human-opossum comparisons, suggesting greater functional divergence. A new measure of efficiency in multigenome phylogenetic footprinting (base regulatory potential rate [BRPR]) shows that including human-opossum conservation increases specificity in finding human TFBSs. CONCLUSION: Opossum facilitates better estimation of promoter conservation and TFBS turnover among mammals. The fact that substantial TFBS numbers are located in a small proportion of the human-opossum conserved sequences emphasizes the importance of marsupial genomes for phylogenetic footprinting-based motif discovery strategies. The BRPR measure is expected to help select genome combinations for optimal performance of these algorithms. Finally, although the etiology of the microRNA upstream increased conservation remains unknown, it is expected to have strong implications for our understanding of regulation of their expression

    A candidate gene analysis and GWAS for genes associated with maternal nondisjunction of chromosome 21

    Get PDF
    Human nondisjunction errors in oocytes are the leading cause of pregnancy loss, and for pregnancies that continue to term, the leading cause of intellectual disabilities and birth defects. For the first time, we have conducted a candidate gene and genome-wide association study to identify genes associated with maternal nondisjunction of chromosome 21 as a first step to understand predisposing factors. A total of 2,186 study participants were genotyped on the HumanOmniExpressExome-8v1-2 array. These participants included 749 live birth offspring with standard trisomy 21 and 1,437 parents. Genotypes from the parents and child were then used to identify mothers with nondisjunction errors derived in the oocyte and to establish the type of error (meiosis I or meiosis II). We performed a unique set of subgroup comparisons designed to leverage our previous work suggesting that the etiologies of meiosis I and meiosis II nondisjunction differ for trisomy 21. For the candidate gene analysis, we selected genes associated with chromosome dynamics early in meiosis and genes associated with human global recombination counts. Several candidate genes showed strong associations with maternal nondisjunction of chromosome 21, demonstrating that genetic variants associated with normal variation in meiotic processes can be risk factors for nondisjunction. The genome-wide analysis also suggested several new potentially associated loci, although follow-up studies using independent samples are required

    Effects of Smoking and Genotype on the PSR Index of Periodontal Disease in Adults Aged 18–49

    Get PDF
    Studies have found both genetic and environmental influences on chronic periodontitis. The purpose of this study was to examine the relationships among previously identified genetic variants, smoking status, and two periodontal disease-related phenotypes (PSR1 and PSR2) in 625 Caucasian adults (aged 18–49 years). The PSR Index was used to classify participants as affected or unaffected under the PSR1 and PSR2 phenotype definitions. Using logistic regression, we found that the form of the relationship varied by single nucleotide polymorphism (SNP): For rs10457525 and rs12630931, the effects of smoking and genotype on risk were additive; whereas for rs10457526 and rs733048, smoking was not independently associated with affected status once genotype was taken into consideration. In contrast, smoking moderated the relationships of rs3870371 and rs733048 with affected status such that former and never smokers with select genotypes were at increased genetic risk. Thus, for several groups, knowledge of genotype may refine the risk prediction over that which can be determined by knowledge of smoking status alone. Future studies should replicate these findings. These findings provide the foundation for the exploration of novel pathways by which periodontitis may occur

    A Preliminary Genome-Wide Association Study of Pain-Related Fear: Implications for Orofacial Pain

    Get PDF
    Background. Acute and chronic orofacial pain can significantly impact overall health and functioning. Associations between fear of pain and the experience of orofacial pain are well-documented, and environmental, behavioral, and cognitive components of fear of pain have been elucidated. Little is known, however, regarding the specific genes contributing to fear of pain. Methods. A genome-wide association study (GWAS; ) was performed to identify plausible genes that may predispose individuals to various levels of fear of pain. The total score and three subscales (fear of minor, severe, and medical/dental pain) of the Fear of Pain Questionnaire-9 (FPQ-9) were modeled in a variance components modeling framework to test for genetic association with 8.5 M genetic variants across the genome, while adjusting for sex, age, education, and income. Results. Three genetic loci were significantly associated with fear of minor pain (8q24.13, 8p21.2, and 6q26; for all) near the genes TMEM65, NEFM, NEFL, AGPAT4, and PARK2. Other suggestive loci were found for the fear of pain total score and each of the FPQ-9 subscales. Conclusions. Multiple genes were identified as possible candidates contributing to fear of pain. The findings may have implications for understanding and treating chronic orofacial pain

    Six NSCL/P loci show associations with normal-range craniofacial variation

    Get PDF
    Objectives: Orofacial clefting is one of the most prevalent craniofacial malformations. Previous research has demonstrated that unaffected relatives of patients with non-syndromic cleft lip with/without cleft palate (NSCL/P) show distinctive facial features, which can be an expression of underlying NSCL/P susceptibility genes. These results support the hypothesis that genes involved in the occurrence of a cleft also play a role in normal craniofacial development. In this study, we investigated the influence of genetic variants associated with NSCL/P on normal-range variation in facial shape. Methods: A literature review of genome wide association studies (GWAS) investigating the genetic etiology of NSCL/P was performed, resulting in a list of 75 single nucleotide polymorphisms (SNPs) located in 38 genetic loci. Genotype data were available for 65 of these selected SNPs in three datasets with a combined sample size of 7,418 participants of European ancestry, whose 3D facial images were also available. The effect of each SNP was tested using a multivariate canonical correlation analysis (CCA) against 63 hierarchically-constructed facial segments in each of the three datasets and meta-analyzed. This allowed for the investigation of associations between SNPs known to be involved in NSCL/P and normal-range facial shape variations in a global-to-local perspective, without preselecting specific facial shape features or characteristics. Results: Six NSCL/P SNPs showed significant associations with variation in normal-range facial morphology. rs6740960 showed significant effects in the chin area (p = 3.71 × 10−28). This SNP lies in a non-coding area. Another SNP, rs227731 near the NOG gene, showed a significant effect in the philtrum area (p = 1.96 × 10−16). Three SNPs showed significant effects on the shape of the nose. rs742071 (p = 8.71 × 10−14), rs34246903 (p = 6.87 × 10−12), and rs10512248 (p = 8.4 × 10−9). Respectively, these SNPs are annotated to PAX7, MSX1, and PTCH1. Finally, rs7590268, an intron variant of THADA, showed an effect in the shape of the supraorbital ridge (p = 3.84 × 10−7). Conclusions: This study provides additional evidence NSCL/P-associated genetic variants influence normal-range craniofacial morphology, with significant effects observed for the chin, the nose, the supraorbital ridges and the philtrum area

    Genome-Wide Association Study of Periodontal Health Measured by Probing Depth in Adults Ages 18−49 years

    Get PDF
    The etiology of chronic periodontitis clearly includes a heritable component. Our purpose was to perform a small exploratory genome-wide association study in adults ages 18–49 years to nominate genes associated with periodontal disease−related phenotypes for future consideration. Full-mouth periodontal pocket depth probing was performed on participants (N = 673), with affected status defined as two or more sextants with probing depths of 5.5 mm or greater. Two variations of this phenotype that differed in how missing teeth were treated were used in analysis. More than 1.2 million genetic markers across the genome were genotyped or imputed and tested for genetic association. We identified ten suggestive loci (p-value ≤ 1E-5), including genes/loci that have been previously implicated in chronic periodontitis: LAMA2, HAS2, CDH2, ESR1, and the genomic region on chromosome 14q21-22 between SOS2 and NIN. Moreover, we nominated novel loci not previously implicated in chronic periodontitis or related pathways, including the regions 3p22 near OSBPL10 (a lipid receptor implicated in hyperlipidemia), 4p15 near HSP90AB2P (a heat shock pseudogene), 11p15 near GVINP1 (a GTPase pseudogene), 14q31 near SEL1L (an intracellular transporter), and 18q12 in FHOD3 (an actin cytoskeleton regulator). Replication of these results in additional samples is needed. This is one of the first research efforts to identify genetic polymorphisms associated with chronic periodontitis-related phenotypes by the genome-wide association study approach. Though small, efforts such this are needed in order to nominate novel genes and generate new hypotheses for exploration and testing in future studies

    Novel caries loci in children and adults implicated by genome-wide analysis of families

    Get PDF
    Background: Dental caries is a common chronic disease among children and adults alike, posing a substantial health burden. Caries is affected by multiple genetic and environmental factors, and prior studies have found that a substantial proportion of caries susceptibility is genetically inherited. Methods: To identify such genetic factors, we conducted a genome-wide linkage scan in 464 extended families with 2616 individuals from Iowa, Pennsylvania and West Virginia for three dental caries phenotypes: (1) PRIM: dichotomized as zero versus one or more affected primary teeth, (2) QTOT1: age-adjusted quantitative caries measure for both primary and permanent dentitions including pre-cavitated lesions, and (3) QTOT2: age-adjusted quantitative caries excluding pre-cavitated lesions. Genotyping was conducted for approximately 600,000 SNPs on an Illumina platform, pruned to 127,511 uncorrelated SNPs for the analyses reported here. Results: Multipoint non-parametric linkage analyses generated peak LOD scores exceeding 2.0 for eight genomic regions, but no LOD scores above 3.0 were observed. The maximum LOD score for each of the three traits was 2.90 at 1q25.3 for PRIM, 2.38 at 6q25.3 for QTOT1, and 2.76 at 5q23.3 for QTOT2. Some overlap in linkage regions was observed among the phenotypes. Genes with a potential role in dental caries in the eight chromosomal regions include CACNA1E, LAMC2, ALMS1, STAMBP, GXYLT2, SLC12A2, MEGF10, TMEM181, ARID1B, and, as well as genes in several immune gene families. Our results are also concordant with previous findings from association analyses on chromosomes 11 and 19. Conclusions: These multipoint linkage results provide evidence in favor of novel chromosomal regions, while also supporting earlier association findings for these data. Understanding the genetic etiology of dental caries will allow designing personalized treatment plans based on an individual’s genetic risk of disease

    Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging

    Get PDF
    Deposition of amyloid plaques in the brain is one of the two main pathological hallmarks of Alzheimer's disease (AD). Amyloid positron emission tomography (PET) is a neuroimaging tool that selectively detects in vivo amyloid deposition in the brain and is a reliable endophenotype for AD that complements cerebrospinal fluid biomarkers with regional information. We measured in vivo amyloid deposition in the brains of ~1000 subjects from three collaborative AD centers and ADNI using 11C-labeled Pittsburgh Compound-B (PiB)-PET imaging followed by meta-analysis of genome-wide association studies, first to our knowledge for PiB-PET, to identify novel genetic loci for this endophenotype. The APOE region showed the most significant association where several SNPs surpassed the genome-wide significant threshold, with APOE*4 being most significant (P-meta = 9.09E-30; β = 0.18). Interestingly, after conditioning on APOE*4, 14 SNPs remained significant at P < 0.05 in the APOE region that were not in linkage disequilibrium with APOE*4. Outside the APOE region, the meta-analysis revealed 15 non-APOE loci with P < 1E-05 on nine chromosomes, with two most significant SNPs on chromosomes 8 (P-meta = 4.87E-07) and 3 (P-meta = 9.69E-07). Functional analyses of these SNPs indicate their potential relevance with AD pathogenesis. Top 15 non-APOE SNPs along with APOE*4 explained 25-35% of the amyloid variance in different datasets, of which 14-17% was explained by APOE*4 alone. In conclusion, we have identified novel signals in APOE and non-APOE regions that affect amyloid deposition in the brain. Our data also highlights the presence of yet to be discovered variants that may be responsible for the unexplained genetic variance of amyloid deposition
    corecore